A New Attack Detection in Large Scale Network based on Entropy
نویسندگان
چکیده
Intrusion Detection System (IDS) typically generates a huge number of alerts with high false rate, especially in the large scale network, which result in a huge challenge on the efficiency and accuracy of the network attack detection. In this paper, an entropy-based method is proposed to analyze the numerous IDS alerts and detect real network attacks. We use Shannon entropy to examine the distribution of the source IP address, destination IP address, source threat and destination threat and datagram length of IDS alerts; employ Renyi cross entropy to fuse the Shannon entropy vector to detect network attack. In the experiment, we deploy the Snort to monitor part of Xi’an Jiaotong University (XJTU) campus network including 32 C-class network (more than 4000 users), and gather more than 40,000 alerts per hour on average. The entropy-based method is employed to analyze those alerts and detect network attacks. The experiment result shows that our method can detect 96% attacks with very low false alert rate.
منابع مشابه
Neural Network Based Protection of Software Defined Network Controller against Distributed Denial of Service Attacks
Software Defined Network (SDN) is a new architecture for network management and its main concept is centralizing network management in the network control level that has an overview of the network and determines the forwarding rules for switches and routers (the data level). Although this centralized control is the main advantage of SDN, it is also a single point of failure. If this main contro...
متن کاملAnomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism
Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...
متن کاملReal-Time intrusion detection alert correlation and attack scenario extraction based on the prerequisite consequence approach
Alert correlation systems attempt to discover the relations among alerts produced by one or more intrusion detection systems to determine the attack scenarios and their main motivations. In this paper a new IDS alert correlation method is proposed that can be used to detect attack scenarios in real-time. The proposed method is based on a causal approach due to the strength of causal methods in ...
متن کاملA Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملAn Ant Colony Optimization Algorithm for Network Vulnerability Analysis
Intruders often combine exploits against multiple vulnerabilities in order to break into the system. Each attack scenario is a sequence of exploits launched by an intruder that leads to an undesirable state such as access to a database, service disruption, etc. The collection of possible attack scenarios in a computer network can be represented by a directed graph, called network attack gra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JNW
دوره 7 شماره
صفحات -
تاریخ انتشار 2012